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Abstract

A numerical study was carried out to investigate the radiation effect on the characteristics of the mixed convection fluid flow and heat
transfer in inclined ducts. The three-dimensional Navier–Stokes equations and energy equation are solved simultaneously with the vor-
ticity–velocity method. The integro-differential radiative transfer equation was solved by the discrete ordinates method. The effects of the
thermal buoyancy and the radiative transfer on the distributions of the bulk fluid temperature, the friction factor and the Nusselt number
are emphasized in detail. Results indicate that radiation effects have a considerable impact on the heat transfer and tend to reduce the
thermal buoyancy effects. In addition, the development of the bulk fluid temperature is enhanced by the radiation effects.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

There are many thermal engineering applications involv-
ing thermal radiation with combined buoyancy and forced
convection. Heat exchangers, furnace design, thermal insu-
lation, electronic system, and cooling processes in nuclear
reactors are some examples. In general, heat transfer result-
ing from coupled processes cannot be calculated separately
in such systems. Otherwise, significant error would occur
due to the interaction between convection and thermal
radiation. Considering the flowing medium as a radiating
molecular gas, its complex absorption and emission spectra
introduce an important difficulty in the simulation of these
flows. Therefore, most of the previous studies on combined
thermal radiation and mixed convection are based on sim-
plifying assumptions such as gray gases [1].

There have been various studies of the analysis of the
combined radiation and convection modes of heat transfer
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[2–12]. Forced convection in a channel with radiation has
been under investigation by many researchers [2–5] for
ducts with prescribed heat fluxes and temperature distribu-
tions on wall surface. Various approximate methods have
been employed for radiative transport in the medium in
these studies. Besides, the differential approximation meth-
ods describe approximation variation of the intensity of
radiation as a function of position and angle. In recent
years, heat transfer by simultaneous free or mixed convec-
tion and radiation has been studied [6–10]. However, some
of the studies are focused on the micropolar fluid [11,12],
while some of the studies pay attention on the porous
boundary [13,14]. Recently, Debbissi et al. [15] studied
evaporation of water in a vertical channel including effects
of wall radiation. Sediki et al. [16] investigated the interac-
tion between radiation and mixed convection for ascending
flows in vertical circular tubes.

For internal flows of mixed convection heat transfer,
the interactions of hydrodynamic and thermal develop-
ment become fairly complicated. Many works have been
done on mixed heat transfer in laminar or turbulent flows
in vertical and horizontal rectangular ducts [17–23].
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Nomenclature

A cross-sectional area of inclined rectangular ducts
(m2)

a, b width and height of inclined rectangular ducts,
respectively (m)

cp specific heat (J kg�1K�1)
De equivalent hydraulic diameter, 2ab/(a + b)
f friction factor, 2sw/(qow2

oÞ
G,G* dimensional and dimensionless incident radia-

tion, G� ¼ G
ð4~n2rT 4

wÞ
Gr Grashof number, gbðT w � T oÞD3

e=m
2

�h circumferentially average heat transfer coeffi-
cient (W m�2 K�1)

k thermal conductivity (W m�1 K�1)
m, m0 direction of the discrete ordinates
M, N number of the finite difference divisions in the X

and Y directions, respectively
n direction coordinate normal to the duct wall
�n refractive index
N* order of phase function
Nc conduction-to-radiation parameter, kj=ð4~n2rT 4

wÞ
Nuc local convective Nusselt number
Nur local radiative Nusselt number
Nut local total Nusselt number
�p cross-sectional mean pressure (kPa)
�P dimensionless cross-sectional mean pressure
p0 perturbation term about mean pressure (kPa)
P0 dimensionless perturbation pressure
Pe Peclet number, Pr � Re

Pn Legendre polynomial
Pr Prandtl number, m/a
Qr dimensionless radiation flux
~qc convective heat flux (Wm�2)
~qr radiative heat flux (Wm�2)
~qt total heat flux (Wm�2)
Ra Rayleigh number, Pr � Gr

Ra* Ra � cosH
Re Reynolds number, woDe/m
s perimeter of duct cross-section, 2(a + b)
T temperature (K)
To inlet temperature (K)
U, V, W dimensionless velocity components in the X, Y,

and Z directions, respectively
u, v, w velocity components in the x, y, and z direc-

tions, respectively (m s�1)

wo uniform velocity at the inlet, m/s
X, Y, Z dimensionless rectangular coordinate, X =

x/De, Y = y/De, Z = z/(De � Re)
Z* dimensionless z-direction coordinate, z/(Pr �

Re � De) = Z/Pr

x, y, z rectangular coordinate system (m)

Greek symbols

a thermal diffusivity (m2 s�1)
b coefficient of thermal expansion (1/�K)
�b extinction coefficient, m�1

c aspect ratio of a rectangular duct, b/a
d mixed convection parameter
ew wall emissivity
/ scattering phase function
js scattering coefficient, m�1

h dimensionless temperature, T/Tw

ho dimensionless inlet temperature, To/Tw

H inclination angle
l, g, f direction cosines
m kinematic viscosity (m2 s�1)
q density (kg m�3)
r Stefan–Boltzman constant, 5.67 � 10�8 W/

m2 K�4

s optical thickness
sw wall shear stress, kPa
x single scattering albedo
X
*

;X0
*

outward and inward direction of radiation
n dimensionless vorticity in the axial direction,

oU/oY � oV/oX

w dimensionless radiation intensity, pI=ð~n2rT 4
wÞ

Superscript
� mean quantity

Subscripts

b bulk fluid quantity
c convective
o condition at inlet
r radiative
w value at wall
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However, different orientations of the channel can induce
different kinds of heat buoyant flows which enhance the
heat transfer in different manners. For inclined ducts,
buoyancy forces act in both main flow and the cross-
stream directions. In fact, the buoyancy forces can be
decomposed into two components: one normal to and
another parallel with the forced flow. Huang and Lin
[24] investigated the transient mixed convection air flow
in a bottom heated inclined rectangular duct. Their atten-
tion was particularly paid to delineate the effects of the
duct inclination on the flow transition with heat transfer
only.

It is noted from the paper review cited above that studies
of simultaneous effect of thermal buoyancy and radiation
in inclined duct flows have never been investigated. This
motivates the present study. The purpose of this study is



Fig. 1. Schematic diagram of the physical system.
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to investigate the laminar mixed convection and thermal
radiation in inclined rectangular ducts.
2. Analysis

A rectangular duct with inclination angle H, width a,
and height b is considered as shown in Fig. 1. To focus
the radiation effects, the entering upward flow is assumed
to be steady and laminar. A uniform axial velocity wo

and a constant temperature To are imposed at the inlet
(z = 0). The velocity components in x, y, and z directions
are denoted as u, v, and w, respectively. The thermophysi-
cal properties of the fluid are taken to be constant except
for the density variation in the buoyancy terms of the
y- and z-direction momentum equations. The Boussinesq
approximation is employed for the thermal buoyancy
effect. The viscous dissipations and compression effect in
the energy equation are neglected due to low Mach number
flows. The walls are maintained at a uniform constant tem-
perature, Tw. In addition, the gas is assumed to be gray,
emitting, absorbing, and scattering. The flow is considered
to be parabolic for this study. In the momentum equations,
a space-averaged pressure �p is imposed to prevail at each
cross-section, permitting a decoupling of the pressure in
the cross-sectional momentum equation. Together with
the neglect of axial diffusion of momentum and heat, the
dynamic pressure pm can then be presented as the sum of
a cross-sectional mean pressure, �pðzÞ, which drives the main
flow, and a perturbed pressure about the mean, p0(x,y,z),
which drives the cross-stream flow,

pm ¼ �pðzÞ þ p0ðx; y; zÞ ð1Þ
For systematical analysis, the dimensionless groups are
introduced as:
X ¼ x=De; Y ¼ y=De; Z ¼ z=ðDe �ReÞ; De¼ 4A=s

Z� ¼ Z=Pr; U ¼ uDe=m; V ¼ vDe=m; W ¼w=wo

ho ¼ T o=T w; h¼ T=T w; �P ¼ �p=ðqow2Þ; P 0 ¼ p0=ðq0v2=De2Þ
Pr¼ m=a; Re¼woDe=m; Ra¼ Pr �Gr; c¼ b=a

Ra� ¼ Ra � cosH; d¼ ðRa=ReÞsinH; N c ¼ kj=ð4�n2rT 4
wÞ;

G� ¼G=ð4�n2rT 4
wÞ

s¼ jDe; Gr¼ gbðT w�T oÞDe3=m2; x¼ js=j ð2Þ

The non-dimensional governing equations of mass,
momentum, and energy can be formulated as follows:

Continuity equation

oU
oX
þ oV

oY
þ oW

oZ
¼ 0 ð3Þ

Momentum equations

U
oU
oX
þ V

oU
oY
þ W

oU
oZ
¼ � oP 0

oX
þ o2U

oX 2
þ o2U

oY 2
ð4Þ

U
oV
oX
þ V

oV
oY
þ W

oV
oZ
¼ � oP 0

oY
þ o2V

oX 2
þ o2V

oY 2
þ Ra cos H

Pr
� h� ho

1� ho

ð5Þ

U
oW
oX
þ V

oW
oY
þ W

oW
oZ
¼ � o�P

oZ
þ o2W

oX 2
þ o2W

oY 2
þ Ra sin H

Pr � Re
� h� ho

1� ho

ð6Þ

Energy equation

U
oh
oX
þ V

oh
oY
þ W

oh
oZ
¼ 1

Pr
o2h

oX 2
þ o2h

oY 2
þ ð1� xÞs2

N c

� ðG� � h4Þ
� �

ð7Þ
The non-dimensional vorticity in axial direction can be ex-
pressed as

n ¼ oU=oY � oV =oX ð8Þ
By combining Eq. (8) with (5)–(7), the governing equations
can then be derived as follows:

U
on
oX
þ V

on
oY
þW

on
oZ
þ n

oU
oX
þ oV

oY

� �
þ oW

oY
� oU
oZ
� oW

oX
� oV
oZ

� �

¼ o2n

oX 2
þ o2n

oY 2
�ðRacosHÞ

Pr
� oh=oX

1� ho

ð9Þ

o2U

oX 2
þ o2U

oY 2
¼ on

oY
� o2W

oXoZ
ð10Þ

o2V

oX 2
þ o2V

oY 2
¼� on

oX
� o2W

oY oZ
ð11Þ

Additional constrain for the mass conservation requires
that the mass flow rate at any axial location be the same,
henceZ ð1þcÞ=ð2cÞ

0

Z ð1þcÞ=2

0

W dX dY ¼ ð1þ cÞ2

4c
ð12Þ

The pressure gradient in the axial momentum equation can
be obtained by employing Eq. (12).



1088 H.-C. Chiu, W.-M. Yan / International Journal of Heat and Mass Transfer 51 (2008) 1085–1094
Concerning the radiation transfer, the medium is consid-
ered as gray, absorbing and scattering. The dimensionless
form of the radiation transfer equation is expressed as

l
ow
oX
þ g

ow
oY
þ sw ¼ ð1� xÞsh4 þ xs

4p

Z
X0¼4p/

ðX0
*

;X
*

Þwd X0
*

ð13Þ
where w is the dimensionless intensity of radiation at a
location of (X,Y), which is of the form pI=ð~n2rT 4

wÞ. In
the equation, the axial term, ow

oZ, is dropped by assuming
oqrz
oZ << oqrx

oX þ
oqry

oY . The parameters l, g, and f are the direc-
tion cosines for the radiation direction ~X. The symbol /
is the scattering phase function, which can be expressed
in terms of Legendre polynomials as

/ðX0
*

;X
*

Þ ¼
XN

n¼0

anP nðl0lþ g0gþ f0fÞ ð14Þ

For a gray, opaque, diffusively emitting, and reflecting sur-
face, the boundary condition is

ww X
*

¼ ew þ
1� ew

p

Z
~n�X0
*

<0

j~n � X0
*

jwwðX0
*

Þd X0
*

;

~n � X
*

> 0 ð15Þ

where ew is the wall emissivity, and~n is the unit normal vec-
tor pointing away from the duct wall into the medium.

As long as the dimensionless radiation intensity w is
known, the dimensionless radiation flux vector and inci-
dent radiation are re-determined from their definitions as

~Qr ¼
~qr

ð4�n2rT 4
wÞ
¼ 1

4p

Z
X¼4p

X0
*

wdX ð16Þ

G� ¼ G

ð4�n2rT 4
wÞ
¼ 1

4p

Z
X0¼4p

wdX0 ð17Þ

The corresponding boundary conditions for this study are:

Entrance (Z = 0):

W ¼ 1; U ¼ V ¼ n ¼ 0; h ¼ ho ð18Þ
Duct walls:

U ¼ V ¼ W ¼ 0; h ¼ 1 ð19Þ
The governing equations contain dimensionless parameters
d, Ra*, c, and Pr, as defined in Eq. (2). The value of d is a
mixed convection parameter, i.e. the ratio of Raleigh num-
ber Ra to the Reynolds number Re, is modified by an incli-
nation angle factor sinH. Besides, Ra*=RacosH is a
modified Rayleigh number. The inclination angle does
not appear explicitly with the introduction of the indepen-
dent parameters d and Ra*. Apparently, for a horizontal
rectangular duct [23],

H ¼ 0; sin H ¼ 0; Ra� ¼ Ra; d ¼ 0 ð20Þ
While for a vertical duct,

H ¼ p=2; sin H ¼ 1; Ra� ¼ 0; d ¼ Ra=Re ð21Þ
After obtaining the velocity and temperature fields along
the axial direction of the rectangular duct, the determina-
tion of local friction factor and Nusselt number is of prac-
tical interest for the study of mixed convection heat
transfer. According to usual definitions, the expression
for the product of the peripherally averaged friction factor
and Reynolds number are expressed as

fRe ¼ �2
oW
on

����
wall

ð22Þ

where the over-bar represents the average around the
perimeters.

Energy transport from the duct wall to the gas flow
depends on two related factors: the fluid temperature gra-
dient on the wall and the rate of radiative heat exchange.
Hence, the local total Nusselt number along the duct wall
is defined as

Nut ¼
�hDe

k
¼ qtDe

kðT w � T bÞ
ð23Þ

where qt = qc + qr = � oT/on + qr. The Nut is the sum of
local convective Nusselt number, Nuc, and local radiative
Nusselt number, Nur. They are respectively defined as

Nuc ¼ �
�o�h
on

1

1� hb

ð24Þ

and

Nur ¼
s�Qr

N c

1

1� hb

ð25Þ

In the above equations, the bulk fluid temperature hb is de-
fined as

hb ¼
R 1þc

2c

0

R 1þc
2

0
h � W dX dYR 1þc

2c

0

R 1þc
2

0
W dX dY

ð26Þ
3. Solution method

For the present study, the equations for the unknown U,
V, W, n, h and d�P=dZ are coupled. The coupled governing
equations are solved by employing vorticity–velocity
method for three-dimensional parabolic flow [25]. The field
solutions for a given combination of parameters are calcu-
lated by a marching technique based on the DuFort–Ran-
kel scheme [26]. The detailed numerical method and
solution procedure can be found in Ref. [27]. In this study,
the radiative transfer equation is obtained by the discrete
ordinates method with SN quadrature [28–30]. The solid
angle 4p is discretized into a finite number of directions,
the discrete ordinate forms of radiative transfer equation
is applied at these directions with the integral term replaced
by a numerical quadrature and becomes

lm
owm

oX
þ gm

owm

oY
þ swm ¼ ð1� xÞsh4 þ xs

4p

X
m0

w�m0/m0mwm

ð27Þ



Table 1
Effects of grid size on local Nut for Ra* = 5 � 104, d = 100, c = 1, ho = 0.3, Nc = 0.1, ew = 0.5, s = 1.0, and x = 0

M � N(DZ*) Z*

0.001 0.005 0.01 0.05 0.1 0.3

81 � 81(1 � 10�5 � 2 � 10�4) 14.08 8.13 7.15 7.83 6.92 5.86
51 � 51(1 � 10�5 � 2 � 10�4) 14.28 8.14 7.17 7.88 6.94 5.86
51 � 51(1 � 10�6 � 2 � 10�4) 14.38 8.14 7.17 7.88 6.94 5.86
31 � 31(1 � 10�5 � 2 � 10�4) 16.13 8.24 7.22 7.93 6.94 5.86
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Fig. 2. Effects of (a) Rayleigh number and (b) conduction-to-radiation
parameter on the bulk temperature distribution along the axial direction.
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with associated boundary conditions

wm ¼ ewþ
1� ew

p

X
m0

wm0 jlm0 jw�m; lm > 0; lm0 < 0; X ¼ 0

ð28Þ

wm ¼ ewþ
1� ew

p

X
m0

wm0 jlm0 jw�m; lm < 0; lm0 > 0; X ¼ 1þ c
2

ð29Þ

wm ¼ ewþ
1� ew

p

X
m0

wm0 jgm0 jw�m; gm > 0; gm0 < 0; Y ¼ 0

ð30Þ

wm ¼ ewþ
1� ew

p

X
m0

wm0 jgm0 jw�m; gm < 0; gm0 > 0; Y ¼ 1þ c
2c

ð31Þ

where subscripts m and m0 represent the directions of the
discrete ordinates and w�m are the quadrature weights.

The discrete form of the phase function /m0m is
expressed as

/m0m ¼
XN�
n¼0

anP nðlm0lm þ gm0gm þ fm0fmÞ ð32Þ

The integro-differential radiative transfer equation is trans-
formed by the angular discretization into a set of coupled
partial differential equations. The choice of the quadrature
scheme affects the accuracy of the SN method, and S6

scheme is employed so the total number of the discrete
direction is 24. The momentum-marching technique [31]
is used to calculate the discrete directions and quadrature
weights. The dimensionless radiation intensity, radiation
flux, and incident radiation are calculated by solving Eqs.
(27)–(31) using procedure described by Modest [30].

The grid distributions in the entrance region were
arranged to be uniform in the cross-sectional plane but axi-
ally non-uniform. A numerical experiment was conducted
with various grid distributions in the cross-sectional plane
(M � N) and axial step size (DZ*) to check the indepen-
dence of the grid resolution of the numerical results. There
are four grid distributions tested in the analysis and shown
in Table 1. They are 31 � 31(1 � 10�5 � 2 � 10�4),
51 � 51(1 � 10�5 � 2 � 10�4), 51 � 51(1 � 10�6 � 2 �
10�4), and 81 � 81(1 � 10�5 � 2 � 10�4), respectively. It
is found that the deviations in local total Nusselt number
Nut calculated with 51 � 51 (DZ* = 1 � 10�5 � 2 � 10�4)
and 81 � 81(1 � 10�5 � 2 � 10�4) are always less than
2% for the base case of Ra* = 5 � 104, d = 100, c = 1,
Nc = 0.1, ew = 0.5, s = 1, and x = 0. Parametrical analysis
is conducted by changing one of the parameters. Further-
more, the deviations in Nut calculated with 51 � 51(1 �
10�5 � 2 � 10�4) and 51 � 51(1 � 10�6 � 2 � 10�4) are
also less than 2%. Therefore, the computations with grid
distribution of 51 � 51(1 � 10�5 � 2 � 10�4) are consid-
ered to be sufficiently accurate to describe the flow and heat
transfer in this study. The local Nusselt number and fric-
tion factor were found to agree within 2%. The above pro-
gram tests indicate that the adopted solution methods are
suitable. The resulting data are also compared with those
in Ref. [32] for validation.
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4. Results and discussion

In the work, the results for air flowing in a heated rect-
angular duct over a certain range of governing parameters
are presented. Therefore, the Prandtl number is set to be
0.7 and the ratio of air inlet temperature and wall temper-
ature is fixed at ho = 0.3. The parameters employed in this
analysis include mixed convection parameter (0 6 d 6 200),
modified Rayleigh number (0 6 Ra 6 2 � 105), conduc-
tion-to-radiation parameter (0.05 6 Nc 6 1), aspect ratio
(0.5 6 c 6 2), optical thickness (0.1 6 s 6 2), wall emissiv-
ity (0 6 ew 6 1), and single scattering albedo (0 6 x 6 1).
Numerical solutions were obtained for axial distributions
of the bulk temperature, local friction factor fRe, and local
total Nusselt number Nut.

Fig. 2 shows the axial distributions of the bulk temper-
ature affected by modified Rayleigh number Ra* and con-
duction-to-radiation parameter Nc. Results without
radiation effect, presented with dashed line, are also
sketched for comparison. It is clear that due to the strong
buoyancy effect, the bulk temperature develops quickly
with larger Ra*. It is also noted that the effect of radiation
on the thermal development is insignificant near the
entrance. However, radiation effect tends to equalize the
temperature in the flow at the downstream (Z*> 0.2). In
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Fig. 3. Effect of mixed convection parameter d on the local (a) friction
factor and (b) Nusselt number for c = 1.
addition, the bulk temperature is almost the same as that
without radiation when Nc is large (Nc > 0.5), correspond-
ing to a weak radiation-convection interaction. The bulk
temperature is higher with stronger radiation effect
(Nc = 0.05) since radiative heat flux is an additional mode
of energy transport.

Fig. 3 depicts the effect of mixed convection parameter d
n the axial distributions of the friction factor fRe and the
local Nusselt number Nut. It is noted that this parameter
is proportional to the sinusoidal function of the inclination
angle. Thus a higher value of d means a higher inclination
angle for constant Ra*/Re. The curve of d = 0 represents
the resulting data for a horizontal duct. Fig. 3a indicates
that for the same value of Ra*/Re, the inclination angle sig-
nificantly increases the local friction factor in the very inlet
region. The curves then tend to merge together and suggest
that the effect is restricted in the entrance region. Radiation
is found to lower the friction factor slightly. On the other
hand, Fig. 3b implies that the radiation effect apparently
increases the local Nusselt number as well as d. Observa-
tion of these curves reveals that Nusselt number near the
inlet declines at first due to forced convection. It then
attains a local minimum because the convection effect is
balanced by the buoyancy effect. The buoyancy effect then
dominates over the entrance convection effect and results in
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Fig. 4. Effect of Rayleigh number on the local (a) friction factor and (b)
Nusselt number for c = 1.0.
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Fig. 5. Effect of Rayleigh number on the local (a) friction factor and (b)
Nusselt number for c = 0.5.
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Fig. 6. Effect of Rayleigh number on the local (a) friction factor and (b)
Nusselt number for c = 2.
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a local maximum of Nut. Past that location, Nut decreases
asymptotically corresponding to the full development of
bulk temperature. The curves with and without radiation
show shift relations and imply that the coupled effect
between radiation and inclination angle is weak. It is found
that the curves with and without radiation approach to dif-
ferent asymptotic values. It means that the radiation effect
give rise to a different thermally fully development states.

Effects of the channel geometry on the friction factor
and Nusselt number are of practical interest. Figs. 4–6
present the effects of modified Rayleigh number Ra* on
the axial distributions of the local fRe and Nut for
c = 1.0, 0.5, and 2.0, respectively. Results indicate that fric-
tion factor with radiation effect is slightly lower than that
without for all the aspect ratio and Ra* values. Obviously,
effects of Ra* are practically negligible as Ra* is small
(<103). Higher Ra* causes more fRe deviation from that
for Ra* � 0 while the difference takes place in a small inlet
region. The figures also show that fRe distribution is
almost independent of c.

As for the axial distributions of Nut, it is seen that both
Ra* and radiation effect have significant influence on the
total heat transfer. It is also observed that Nut decreases
in the inlet region due to entrance forced convection and
then reaches local minimum since the entrance and buoy-
ancy effects balance out. The buoyancy effects on Nut are
insignificant up to a certain distance, but have a substantial
augmentation at further downstream. Close comparison
shows that data of lower c cause higher Nut in the entrance
region, meaning the narrow and tall duct causes more sig-
nificant convective heat transfer. This is due to the fact that
a duct with smaller c results in stronger buoyancy effects
than a duct with larger c does. The value of Ra* affects
the local Nut in the entrance region. But the radiation
affects the Nut through out the duct.

The effects of the conduction-to-radiation parameter Nc

on the axial variation of the local fRe and Nut are shown in
Fig. 7. It is seen that fRe is not apparently influenced by Nc

in the very entrance region, since the forced convection is
predominant such that the velocity gradient is small in this
region. However, the radiation effect becomes more impor-
tant in the downstream range and causes deviation. It is
found that the fRe decreases with decreasing Nc, indicating
that friction factor is reduced as radiation effect increases.
This may be explained by the fact that the temperature field
is flattened with the presence of radiation causing a reduc-
tion of buoyancy effect, which in turns leads to the reduc-
tion in fRe at the downstream. It is observed in Fig. 7(b)
that the local Nut with radiation effect is larger than that
without radiation effect. This can be easily understood by
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the fact that thermal radiation is an additional mechanism
of heat transfer and the radiation source term in the energy
equation augments the rate of thermal development as
aforementioned. Therefore, the radiation effect enhances
both the heat flux through fluid and the rate of thermal
development. It is also noted that the Nut converges to
the case of no radiation with increasing Nc (>0.5), suggest-
ing that effect of radiation is negligible as the Nc is larger
than 0.5.

Fig. 8 presents the effects of wall emissivity ew on the
local fRe and Nut . Similarly, it is found in Fig. 8(a) that
the effects of ewon the fRe are restricted in the downstream
region. It is also observed that the stronger radiation effect,
the less the value of fRe. Apparently, the local Nut with
radiation effect is larger than that without. Besides, Nut

increases as the wall emissivity ew increases and the heat
transfer is the maximum for a black duct (ew = 1).

The optical thickness s of the medium is an important
radiation property in the heat transfer and fluid flow. A
small s indicates medium does not absorb and emit much
energy, while a large s indicates a strongly radiative partic-
ipating medium. The influence of optical thickness s on the
axial distribution of fRe and Nut is depicted in Fig. 9. It is
easily seen that the optical thickness does not affect the
local fRe in the very inlet. At the downstream near by,
fRe decreases as s increases. The trend of curves is similar
to that in Fig. 7. A larger s indicates a stronger radiation
effect. Hence fRe decreases as s increases. The reason is
the same as aforementioned. It is also shown in Fig. 9(b)
that the local Nut increases with the increase of s. From
the deviation of curves, it is also found that for a system
with a larger s, the radiation has a stronger effect on Nut.
Therefore, it is concluded that more heat is transferred
from a medium with a higher s than that with a lower s.

In many physical applications particulates are present in
the fluid. Therefore, scattering processes are also important
in radiative heat transfer. The effects of the single scattering
albedo on the fluid flow and heat transfer are of interest. In
this study, the scattering is assumed to be isotropic. Fig. 10
shows the effects of single scattering albedo x on the axial
variations of local fRe and Nut. The amount of energy that
impinges upon the gray medium depends on the scattering
albedo. When single scattering albedo x approaches zero,
the emission and absorption of the radiative energy within
the medium dominate. But as the scattering albedo x
approaches unity, the scattering of the radiative heat trans-
fer dominates. It is seen that the local fRe is slightly raised
when x is varied from 1.0 to 0. In addition, the local Nut

decreases with increasing x. Observation on Figs. 4–10
indicates that radiation properties affect local fRe in the
entrance region, while they affect the Nut through out the
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ducts. The inclination angle is found to show more signif-
icant effect on local fRe than radiation properties due to
buoyancy.

5. Conclusions

The study of radiation effects on mixed convection in
inclined rectangular ducts has been performed numerically.
The effects of modified Rayleigh number, aspect ratio c of
the duct, conduction-to-radiation parameter Nc, optical
thickness, wall emissivity, and single scattering albedo on
momentum, heat and mass transfer have been analyzed
in detail. Brief summaries of the major results are listed
below:

1. Both buoyancy and radiation effects enhance thermal
development and cause higher bulk temperature in the
entrance region. Radiative heat flux is an additional
mode of energy transport and the local total Nusselt
number is augmented by the radiation effect.

2. The inclination angle enhances both the local friction
factor and local Nusselt number. But the effect is
restricted in the entrance region only.

3. Results show that Nut slightly increases as c decreases
for same Ra*.
4. Buoyancy shows much stronger effect on the local fric-
tion factor than other parameters mentioned in this
study. Both the local friction factor and total Nusselt
number are increased by buoyancy.

5. The local total Nusselt number is increased by increas-
ing optical thickness of the gray medium, wall emisivity
and reducing single scattering albedo.
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